

Geomagnetic Disturbances

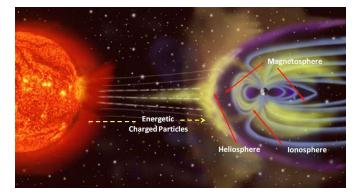
IEEE PES Chicago Chapter Technical Presentation March 12, 2014

Alan Engelmann Transmission Planning ComEd

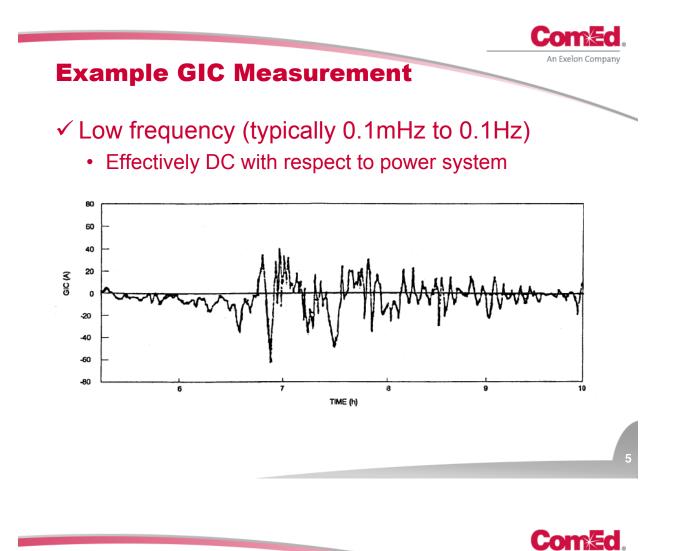
GMD Background

- ✓ Solar Disturbances
- ✓ Impacts
- ✓ Monitoring
- ✓ Events

An Exelon Company

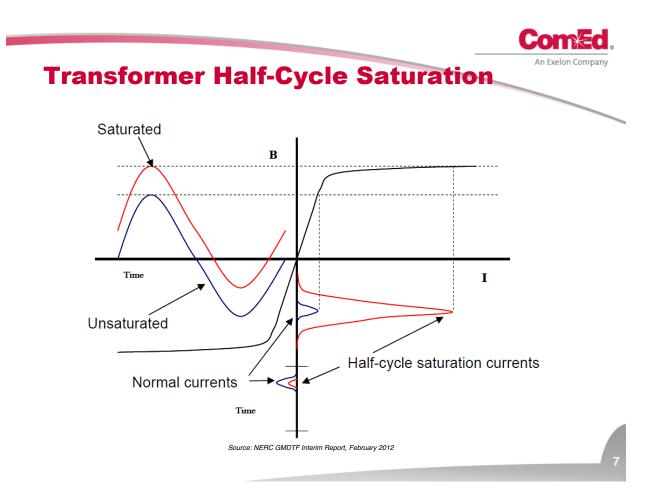

Solar Disturbances

- ✓ Geo-Magnetic Disturbances (GMD) result from Coronal Mass Ejections (CME)
 - CMEs originate from disturbances on the sun
 - · Release large mass of charged particles
 - Can reach earth in 14 to 96 hours



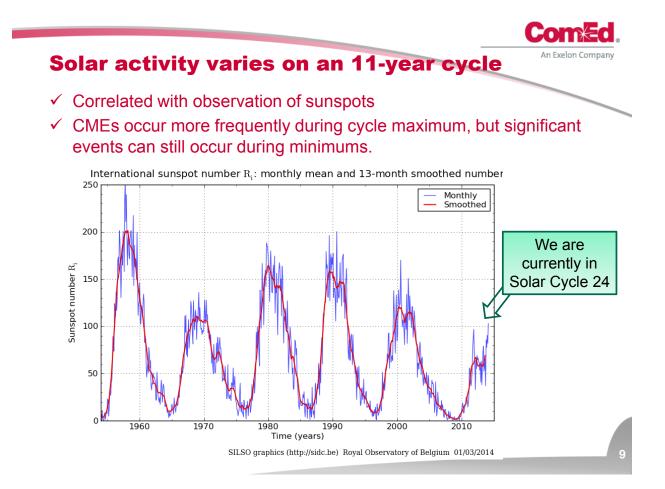
CME Impact

- ✓ Earth-directed CMEs interact with earth's magnetic field
 - Affect atmospheric currents, auroras
 - · Voltages induced on surface of earth
 - Quasi-DC Geo-Magnetically Induced Currents (GIC) flow in transmission lines, pipelines, and railways



Source: NERC GMDTF Interim Report, February 2012

Impact on Power Systems


- ✓ One significant impact of GIC is transformer core saturation. This can result in:
 - Abnormal transformer heating
 - Increased transformer VAR losses
 - Harmonics
 - Inadvertent equipment trips
 - Generator heating and vibrations
- ✓ Factors that can influence GIC magnitudes include
 - Strength and orientation of CME
 - Latitude
 - Latitudes near poles experience greater impact
 - Geology
 - Low conductivity regions experience larger voltage gradients
 - System configuration, line length and orientation

Space Weather Monitoring

- Monitored with satellites and earth-based measurements
 - Occurrence of CMEs cannot be predicted well, but propagation and impact can be estimated once it occurs
 - Once disturbance has reached the "ACE" satellite, more accurate prediction of severity can be issued – an hour or less before impact
- ✓ Space Weather Prediction Center (SWPC) in Boulder, CO
 - Real-time monitoring and prediction for U.S.
 - · Issues forecasts, warnings, watches, and alerts
 - · Dissemination of alerts to power system operators
- ✓ K index
 - Classifies magnitude of disturbance.
 - K ranges from 0 to 9, with 9 being the most severe.

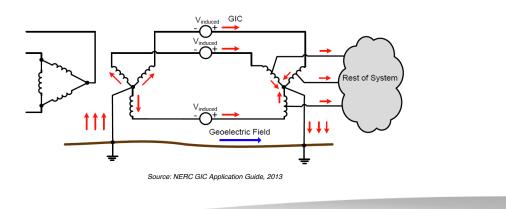
Past Events

- ✓ 2003 Halloween Solar Storm
 - Largest event during last solar cycle (23)
 - Affected communications and satellites
 - · U.S. power systems saw increased GIC and some capacitor trips
 - Northern Europe saw some large GIC flows. Brief blackout in Sweden due to line trip on high harmonic currents
- ✓ 1989 Hydro Quebec Blackout
 - Severe K9 GMD event
 - Resulted in blackout of the system
 - Long (1000 km) 735 kV transmission and low-conductivity geology contributed to high GIC flows
 - Harmonics from saturated transformers caused 9 SVCs to trip

Past Events (continued)

- ✓ 1921 Solar Storm
 - Auroras observed as far south as Caribbean
 - Disrupted telegraph operations in U.S.
- ✓ 1859 Carrington Event
 - Largest GMD event recorded to date (possibly 50% stronger than 1921 disturbance)
 - Auroras observed as far south as Panama
 - Disrupted telegraph operations in North America and Europe

Studies and Analysis

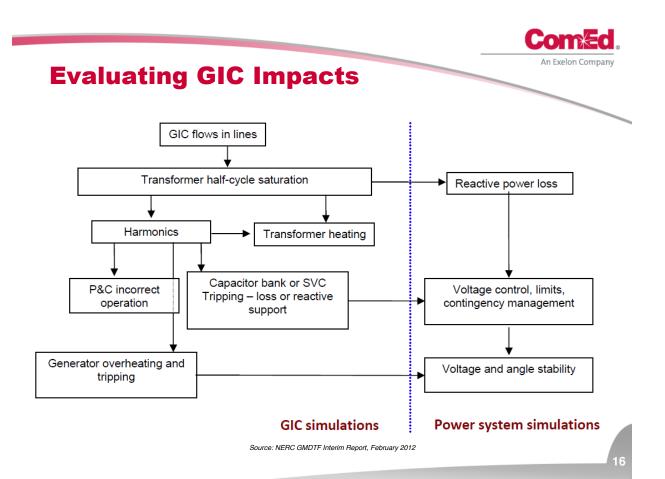

- ✓ System Studies
- Transformer analysis and testing
- ✓ Mitigation

GIC Modeling

An Exelon Company

- GMD-induced voltages modeled as DC voltage sources on HV transmission lines
 - Voltage determined by line length and orientation, assumed electric field magnitude and direction
 - · Zero sequence: path to ground needed for GIC flow
 - GIC flows depend on DC resistances (lines, transformers, ground)

Performing GIC Studies


✓ Data needed:

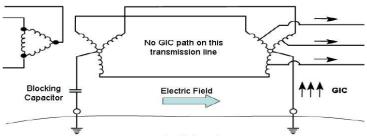
- Power flow topology model
- Substation geographic coordinates
- Line & transformer DC resistance
- Grounding resistance
- Transformer winding configuration & grounding
- Transformer MVAR vs. GIC relationship
- ✓ Uniform electric field uniform is often assumed
 - Linear combination of results from N-S and E-W fields can be used to calculate results for any field direction and strength
- ✓ Study tools available for several power flow applications
 - Commercial: Power World, PSS/E, PSLF
 - OpenDSS (EPRI)

Using GIC Study Results

- ✓ Power flow studies
 - Additional transformer MVAR losses due to GIC added to model
 - · Evaluate voltage stability, reactive margins
 - · Contingency studies
 - Loss of lines, transformers, capacitors, e.g.
 - Mitigation
 - Operational strategies
 - Mitigation devices
- ✓ Transformer impacts
 - · Evaluate GIC with respect to capabilities
 - Thermal assessments
- ✓ Identify prospective GIC monitoring locations
- ✓ Harmonic Analysis
- ✓ Time-domain simulation

GMD Mitigation

- ✓ Mitigation strategies
 - Conservative operation
 - Restore outages
 - Monitoring (e.g., GIC, transformer heating, harmonics)
 - Switching (e.g., opening long lines, transformers over limits)
 - Blocking GIC flow

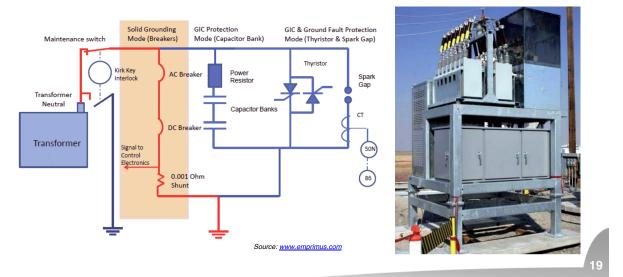

✓ GIC mitigation devices

- · Series capacitors
- Neutral blocking devices
 - Involves insertion of capacitance or resistance in transformer neutral connection
 - Potential concerns with wide-scale use
 - May just move the problem elsewhere, aka: "whack-a-mole"
 - Prototype device installed on ATC system

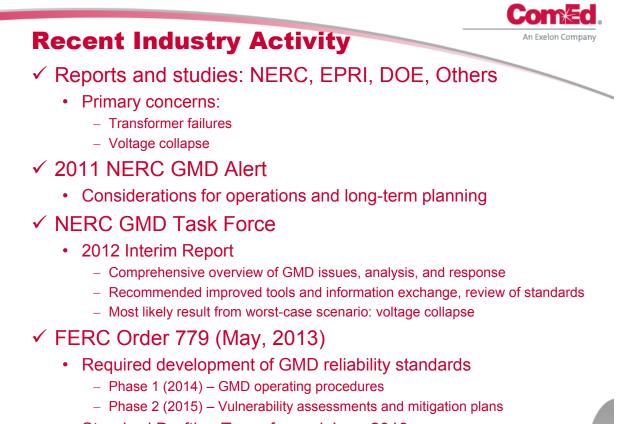
GIC Blocking • Series capacitors • Series capacitors • Electric Field • Gic

Source: Geo-magnetic Disturbances (GMD):Monitoring, Mitigation, and Next Steps, EPRI (2011)

✓ Blocking capacitor in transformer neutral



Source: Geo-magnetic Disturbances (GMD):Monitoring, Mitigation, and Next Steps, EPRI (2011)


Example GIC Blocking Device

- ✓ ABB/Emprimus SolidGround[™] device
 - Normal solid-ground connection through CBs
 - · Capacitor inserted in neutral when GIC is detected
 - ATC has installed one of these devices for evaluation

Industry Activity

• Standard Drafting Team formed June 2013

GMD Reliability Standards – Phase 1

✓ EOP-010-1

• Approved by the NERC Board November 2013

✓ Requirements

- R1. Reliability Coordinators (RC) to develop, maintain, and implement a GMD Operating Plan.
- R2. RCs to disseminate forecasted and current space weather information.
- R3. Transmission Operators (TOP) to develop, maintain, and implement GMD Operating Procedures to mitigate effects of GMD.
 – Systems 200kV and above

✓ FERC proposed approval January 2014

Subject to enforcement 6 months after approval by FERC

GMD Reliability Standards – Phase 2

✓ TPL-007 under development

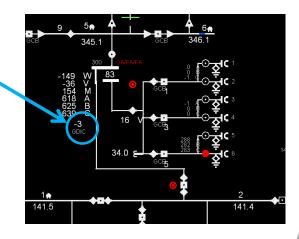
- ✓ Anticipated requirements:
 - "Benchmark GMD events" that must be assessed
 - Definition of "100-year" event proposed with consideration for geo-magnetic latitude and local geology
 - Initial and continuing assessments of the potential effects of benchmark events on the system
 - Develop and implement plans to protect against instability, uncontrolled separation or cascading failures of the system.

An Exelon Company

What's Being Done?

- ✓ Monitoring/participating in standards development
- ✓ GIC studies
- ✓ Monitoring
 - Neutral GIC flow
 - Transformer heating, VARs, harmonics
- ✓ Operating procedures
- Transformer specifications, modeling, testing
- Evaluation of blocking devices

An Exelon Company


ComEd / Exelon

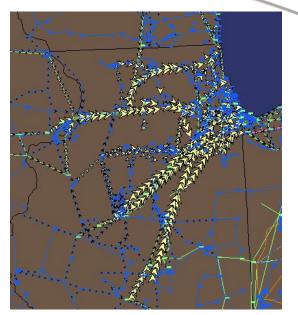
✓ Internal technical team formed

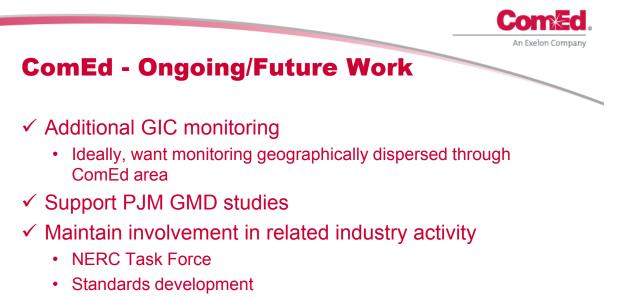
- ✓ Transformer monitoring
- Transformer testing and specifications
- ✓ Operating procedure review
- ✓ Studies

- Electronic transformer monitoring systems are installed on all ComEd transmission-level autotransformers
 - Includes oil and winding temperatures.
- ✓ GIC requirements added to specifications for large transformers
- Transformer manufacturer GIC testing, simulations
- ✓ GIC monitoring installed on several autotransformers
 - CT installed on neutral
 Hall Effect device to detect DC
 - SCADA alarms at defined levels of GIC
 - Data provided to PJM
 - Historical data available

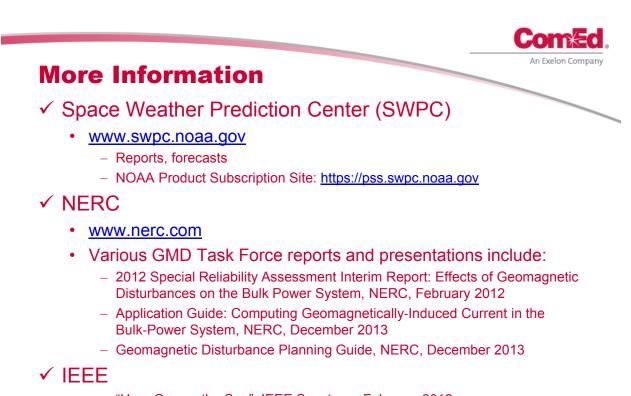
ComEd - Transmission Operations

✓ ComEd Transmission Operations Guidelines


- Restore outages to return the system to normal if possible.
- Avoid unnecessary switching of transmission equipment.
- Turn on capacitor banks to increase generator reactive reserves.
- Attempt to control transmission voltages to near normal levels and maintain sufficient reactive reserves.
- Monitor alarms for high transformer temperature.
- Monitor for transformer GIC alarms
- ComEd operations coordinated with PJM
 - PJM GMD procedure in Manual 13: Emergency Operations
- ✓ Operator training
 - Operator training includes overview of GMD issues and operating guidelines



Com Ed An Exelon Company


ComEd System GMD Study

- ✓ Performed by University of Illinois using PowerWorld
- ✓ Simulation results
 - Transformer GIC flows and reactive losses calculated
 - Tested various storm
 magnitudes and directions
- ✓ Applications
 - Identify locations for additional GIC monitoring
 - Insight into facilities most affected
 - GMD magnitudes at which system issues might occur

Industry forums

- "Here Comes the Sun", IEEE Spectrum, February 2012
- "Geomagnetic Disturbances, Their Impact on the Power Grid", IEEE Power & Energy Magazine, July/August 2013

Thank You!

Contact: alan.engelmann@comed.com

